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Abstract

The objective of this research was to determine if measurements from a Sagnac in-

terferometer could provide reliable estimates of satellite material composition. The Sagnac

interferometer yields a spatial interferogram that can be sampled by a linear detector array.

The interferogram is related to the spectrum of the source through a Fourier transform.

Here, spectral refiectivities of nine common satellite materials were used to simulate the

spectrum one obtains from an ideal Sagnac interferometer in the beam-train of a ground-

based telescope whose mission is to view satellites. The signal-to-noise ratio of the spectrum

was varied to simulate the effect of range variation between the sensor and the satellite. The

simulated spectra consisted of a linear mixture of spectra from two of the nine materials.

Three different architectures were developed and their performances compared. One

of the three architectures consisted of nine artificial neural networks (ANNs), one for each

material, and a linear estimator that estimated the satellite surface area attributable to each

material. This method estimates the material composition by using a classifier to identify the

materials contributing to the mixture, then eliminating unlikely contributors to the mixture

before performing a constrained linear estimate. It is shown that due to high classification

errors, the system using solely a linear estimator provides the estimate with the lowest errors.

xi



SATELLITE SURFACE MATERIAL COMPOSITION

FROM SYNTHETIC SPECTRA

I. Introduction

1.1 Motivation

The Persian Gulf War with Iraq demonstrated the new role that spacecraft will have

in all future international conflicts. The missions of these satellites included such things

as photoreconnaisance of weather and ground movements, global positioning, and real-time

communications. Due to the increased use of space assets in wartime, the United States

Space Command must identify each operable space asset as belonging to either a friend or a

foe, and assess its mission and health status. An economical means to identify these objects

is to use ground-based observation platforms. These systems primarily use two types of

measurements, image and radar, for object identification. Both image and radar technolo-

gies have made significant improvements in the last few decades, but these technologies are

limited in their information content. The field of hyperspectrometry, the simultaneous mea-

surement of both spatial (image) and spectral (wavelength) information, provides additional

capabilities and appears useful as another technique for Space Object Identification (SOI).

The Phillips Laboratory at Kirtland AFB, New Mexico, is actively pursuing the use of a



hyperspectrometer based on Sagnac interferometer for ground-based observations of orbiting

satellites, and is the sponsor of this research.

1.2 Research Objectives

The overall objective of this research is to determine whether the interferogram recorded

by a Sagnac triangular-path interferometer may be used to provide reliable estimates of a

spacecraft's material composition. Such a determination must be based on the expected

signal-to-noise ratio (SNR) of data obtained from the Sagnac interferometer and on the abil-

ity to decompose a composite spectrum into its constituent spectra. To meet this objective,

several tasks are required:

"* Develop a SNR expression for the Sagnac interferometer.

"• Model typical satellite observation scenarios and estimate expected range of SNRs.

"* Simulate observation data using appropriate SNR levels.

"* Develop a system to estimate the spacecraft's material composition.

- Baseline MLP performance to performance of a Parzen classifier.

- Design MLP for direct estimate of material composition.

- Design constrained linear estimator.

- Design hybrid estimator using a MLP classifier and a constrained linear estimator.

"* Compare and evaluate the results.

2



The first task requires an understanding of the principles of Fourier Transform Spectroscopy

(FTS). The development of the SNR expression for the Sagnac interferometer is based on

assumptions and conclusions generally accepted for FTS. Once an expression for the SNR is

developed, the second task provides realistic SNRs for data obtained from a ground-based

Sagnac interferometer whose purpose is to view satellites. The third task uses a material

database, containing spectral reflectivities of common satellite materials, to create simulated

data with the appropriate SNRs. The data is entered into a system that is designed to esti-

mate the percentage of the satellite's surface that is covered by a material. In this research,

three such systems were developed. Each system uses a database of spectral reflectivities of

known satellite surface materials. The final task compares and evaluates the results obtained

from the three systems.

1.3 Assumptions

In order to meet the objectives of the research in the allotted time, and to find an upper

bound on system performance, several assumptions are necessary. Some of the assumptions

are the result of engineering judgement, while others are found in the literature. Many of

the assumptions are made in order to keep the modelling process simple and manageable.

The first assumption is that the Sagnac interferometer is in the beam-path of a ground-

based telescope, whose application is to view satellites, and that the reflected light from

the satellite is present on the input aperture of the Sagnac interferometer throughout the

observation interval. Sunlight reflected from the surface of the satellite is assumed to be

3



the sole source of irradiance entering the Sagnac interferometer. Each detector observes the

light reflected from more than a single satellite surface resulting in a phenomena known as

"spectral mixing" (10:327). Spectral mixing can be of two types, either linear or nonlinear,

depending upon the geometry of photon interaction. Linear mixing occurs if a single photon

encounters only one material, whereas nonlinear mixing occurs if a single photon is scattered

by two or more materials prior to being detected by the sensor (3:2069). Here, it is assumed

that spectral mixing occurs in a purely linear fashion.

Light from other sources such as the background and the atmosphere are assumed

negligible. The assumption of negligible background light is restrictive, however the effects

of this assumption are lessened when satellites are viewed during what is referred to as

terminator, a one-to-two hour period prior to sunrise or following sunset. During terminator,

the sun illuminates the satellite but does not illuminate the sky or the ground-based sensor.

Therefore, the sky background can be modelled as a four Kelvin blackbody radiator. A

four Kelvin blackbody radiates light of much weaker irradiance than the light reflected off

of an illuminated satellite. The other assumption, of negligible atmospheric degradation, is

more restrictive because the atmosphere absorbs light energy across the spectrum. However,

using excellent atmospheric models and calibration procedures commonly used in FTS, this

restriction poses little concern for a properly designed system.

Several additional assumptions are made regarding the equipment design: The Sagnac

interferometer is assumed flawless, its optics are free of aberrations and its alignments and

calibrations are exact. The output of the interferometer is measured with a charge-coupled

4



device (CCD) detector array. The individual detector elements in the array are assumed

equally sensitive to all wavelengths in the range 300 nm to 1 pm, and entirely insensitive to

all other wavelengths. It is further assumed that the post-processing algorithms used on the

raw data eliminate all remaining undesirable effects and yield spectra that is exactly that of

the satellite plus additive Gaussian noise of appropriate strength.

Other assumptions are necessary and are discussed in the text. These additional as-

sumptions are only applicable to specific segments of the research, and are mainly used to

simplify analysis.

1.4 Summary of Key Results

This thesis shows that, under ideal conditions, the interferogram obtained with the

Sagnac interferometer may be used in a system that is designed to estimate the material

composition of an orbiting spacecraft. Of the systems considered in this research, a neural

network, a constrained linear estimator, and a hybrid system with a neural network and a

constrained linear estimator, the constrained linear estimator provides the percent composi-

tion estimate with the lowest RMS error. On data containing the spectra of two materials,

the average error in the estimate for the constrained linear estimator was only 5.55% for data

with average signal-to-noise ratios (SNRs) of 10, and 0.68% for data with average SNRs of

100.

5



1.5 Organization of Thesis

The research objectives are treated in this thesis as follows: Chapter II briefly presents

the theory of Fourier Transform Spectroscopy and then the first-order operation of the Sagnac

interferometer. Chapter II also presents the derivation of a SNR expression for the Sagnac

interferometer, and a model that provides expected SNRs for typical satellite observation

scenarios. Chapter III provides block diagrams for three systems that estimate the satellite's

surface material composition and then proceeds to discuss the theoretical concepts necessary

for their implementation. Areas included in this theoretical discussion are the Multi-Layer

Perceptron (MLP), the Parzen classifier, and a constrained linear estimator. Chapter IV

provides validation of the MLP for a one-material problem, and Chapter V gives results of

applying the three systems to a two-material problem. Chapter VI draws conclusions and

provides recommendations for future research.

6



I. The Sagnac Interferometer

As previously mentioned, the Sagnac interferometer is under investigation as a potential

instrument for purposes of Space Object Identification. A fundamental question must be

answered, "Can the Sagnac interferometer provide information not currently available in

either image or radar measurements?" This research provides an answer by examining

the spectra obtained from interferometric measurements using a Sagnac interferometer and

determining whether the spectra is of sufficient SNR to be useful for estimates of material

composition.

The groundwork for this research effort is presented in this chapter through an estimate

of the Sagnac interferometer's SNR for typical ground-based satellite observation scenarios.

The sections in this chapter include:

"* Introduction to Fourier Transform Spectroscopy

"* Introduction to the Sagnac Interferometer

"* SNR of the Sagnac Interferometer

"* Expected SNRs using Radiometric Models

2.1 Introduction to Fourier Transform Spectroscopy

Fourier Transform Spectroscopy (FTS) is a method to recover the electro-magnetic

spectrum of the light emitted or reflected from an object by performing a Fourier transform on

the measured interference pattern, or interferogram (27:19). The interferogram is measured

7
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Figure 1. Michelson Interferometer with Auxiliary Optics.

by an interferometer. The interferometer most often used today in FTS is the Michelson

interferometer (9:1023A). The Michelson interferometer, shown in Fig. 1, was introduced in

1880 when Dr Albert A. Michelson measured the speed of light in vacuum in the well-known

Michelson-Morley experiment (2:17). In the Michelson interferometer, light from the source

is focused onto a circular aperture and then collimated. The collimated beam impinges upon

the beam-splitter where 50% of the beam is transmitted and 50% of the beam is reflected.

The two beams in the two arms of the interferometer are reflected by the mirrors, recombined

by the beam-splitter, and then focused onto a single detector (9:1023A).

Consider the condition when light from a monochromatic source is incident on the

input aperture. If the beams in the two arms of the interferometer have equal optical path

differences (OPD), they will constructively interfere and the light on the detector will appear

bright. As one mirror is translated and the OPDs become unequal, destructive interference

8
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Figure 2. Interferogram obtained from a monochromatic source. Intensity peaks equally
spaced one wavelength in optical path difference (OPD). Zero path point refers
to condition when OPD equals zero.

can occur, causing the light intensity on the detector to decrease. If one of the mirrors is

moved at a constant velocity, the interference pattern alternates between constructive and

destructive interference giving rise to an interferogram, Fig. 2, which for monochromatic

light has the form of a cosine fluctuation(9:1024A). When the path lengths in the two arms

of the interferometer are equal, we refer to this condition as the zero path point. For a

monochromatic source, the interferogram can be written as

I (x) = B (a) [1 + cos (27rax)] (1)

where I is the intensity on the detector, x is the OPD in cm, 2B is the intensity of the

source, and o, is the wavenumber of the radiation in cm- 1 (9:1024A).

9
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Figure 3. Interferogram obtained from a polychromatic source. Central intensity peak re-
sult of all light wavelengths being in phase at zero path point. Extension of
waveform in both directions eventually yields a constant level.

For a polychromatic source, the detector sees the sum of the interference for all wave-

lengths (9:1024A). The interferogram takes the form as shown in Fig. 3. At the zeroth path

point, a central fringe, or intensity peak, is observed due to the constructive interference

of all wavelengths of the source. As the OPD increases, the envelope of the interferogram

decreases until a steady-state dc level is reached (9:1024A). The decrease in the envelope of

the interferogram can be viewed in two equivalent ways, as either a "dephasing of elementary

fringes, or in terms of a loss of correlation due to the finite pathlength delay" (13:160). The

modulation of the fringe drops to approximately zero when the OPD increases beyond the

coherence length of the source (13:163). The intensity distribution near the central portion

of the fringe contains low resolution information about the source, while the intensity at

10



higher OPDs contain high resolution information. The detector used in FTS must have

adequate dynamic range to ensure that both the high and low resolution information is mea-

sured, and the source must remain stable during the observation time, or the time that the

interferogram is being sampled (9:1024A).

Bell showed that the interferogram is the autocorrelation of the incident wave am-

plitude (2:43) and the Wiener-Khinchine theorem states that the Fourier transform of the

autocorrelation of a function is the power spectrum for that function (19:8). Hence, the inter-

ferogram and the power spectrum are Fourier transform pairs (21:59) (33) (27:19) (32:250).

To record the entire interferogram produced by the source, the mirrors in an ideal

Michelson interferometer would traverse from an OPD of zero to an OPD of infinity. Since

this is not realizable in practical applications, the sampled interferogram is limited to OPDs

from zero to some maximum value. This is equivalent to multiplying the interferogram by

a rectangular "window" function. The window function being zero outside the measured

region (24:167).

I (x) B (a) [1 + cos (27rux)] rect (2)

where the "window" function is given as

reet =x ,-/ / (3)

0, otherwise

Taking the Fourier transform of the measured interferogram to yield the desired spectra will

result in sidelobes due to the window function (8:68) (24:167). The Fourier transform of

11



Eqn. (3) is a function commonly referred to as the sinc function. It consists of a central

lobe with decreasing sidelobes. A common method to reduce these sidelobes is to multiply

the interferogram by an apodizing function (8:68) (32:252) (2:51).

Errors in FTS spectral recovery are due to the aperture effect, tilt and aberrations,

truncation, phase and compensation errors, and noise (19:14). These errors can be eliminated

or reduced to a point that the computed spectrum closely approximates that of the source,

especially when high signal-to-noise ratios are present. The primary sources of noise are

detector noise, photon noise, scintillation noise, and digitization noise. Detector noise is

inherent in the detection mechanism itself and is independent of the incident signal level.

Photon noise occurs because of the random arrival times of photo-events in detectors, usually

modelled mathematically as a Poisson process. Scintillation noise refers to a slow drift in the

intensity of the light incident on the interferometer input. Several techniques have been used

to minimize effects of scintillation. Digitization noise refers to random fluctuations caused

by the analog-to-digitalconversion process and can be reduced with sophisticated electronics

(27:28-29).

Sakai stated that the signal-to-noise ratio in the recovered spectrum, not that in the

interferogram, is the prime factor that determines the quality of a measurement in FTS

(27:19). Goodman developed an expression for the SNR of a Michelson interferometer (13).

He used the Discrete Fourier Transform (DFT) of the count vector as an estimation tool to

estimate the fringe parameters. From his analysis, he expressed the SNR in fringe amplitude

12



by

( S) _KI _+K2• (4)

N rms 2

where 70 is the visibility in fringe amplitude and K1 = aATNI 1 and K2 = aATNI 2 are the

average number of photo-events generated by the interfering beams across the entire array

(13:490-500).

2.2 Introduction to the Sagnac Interferometer

The Sagnac interferometer was first introduced by Sagnac to measure the rotation

of the earth (32:183) and is commonly used today in navigation gyros (6). The Sagnac

interferometer, Fig. 4, has advantages that are desirable for applications in Space Object

Identification (SOI). For instance, the Sagnac interferometer has no mechanical moving parts,

is easy to align and is very insensitive to equipment vibrations or mirror displacements

(30:269). Also, the Sagnac interferometer has an advantage that allows it to measure the

interferogram of rotating or unstable spacecraft.

Unlike the Michelson interferometer which uses a single detector and requires the inter-

ferogram to be scanned during the observation interval, the Sagnac interferometer spatially

distributes the interferogram across a linear array of detector elements, thereby allowing si-

multaneous sampling of the entire interferogram (27:4222). In the Sagnac interferometer, the

incident collimated wavefront is split into two beams by a beam-splitter. The beams follow

the same paths in opposing directions, are reflected by the mirrors, and are recombined by

the beam-splitter. One of the mirrors is translated such that the recombined beams are lat-

13
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Figure 4. Schematic Diagram of the Sagnac Interferometer

erally displaced, or sheared. The magnitude of the lateral shear is controlled by the position

of the mirror and the wavelength of the source. The mirror position is set during alignment

and is stationary during the observation interval. Therefore, during the observation, the

lateral shear is controlled only by the wavelength of the source. Each source location, or

emitter, provides an irradiance that, when combined with the irradiance of the other source

emitters, yield a spatially coherent interferogram on the detector plane. The spherical lens

in Fig. 4 focuses the interferogram onto the detector.

Okamoto et al. modeled the recorded interferogram by the expression

r. (m) = s (o-) b (o-) (1 + cos [27rol (o)(dm - do (5)
Tm1n f

14



where s (a) is the spectral distribution of the source, b (u) is the system transfer function, d

is the separation between detector elements in the linear array, ¢ is the distance between the

center of the optical axis and the cell for zero OPD, f is the focal length of the focusing lens,

Umin and Umax are the minimum and the maximum wavenumbers within the bandpass of

the detector or optical filter, and I is the lateral shear (or distance between virtual sources)

(31:4222).

2.3 SNR of the Sagnac Interferometer

Assume that the interferometer is well designed and aligned so that ¢ = 0 for all

cmin < a < Umax. Also, assume 1 constant and b (a) = 1 throughout bandpass. Now, Eqn.

(5) becomes

.(m)= •.am s(a) [± +cos 21rfmd]do, (6)

Or, rewritten as

fUmax 0'max (2rumd)
S(M ) = s (a) d a ] s (U) cos - du (7)

U Omin Umin

Following Goodman's approach (13:494), the Discrete Fourier Transform (DFT) of

the count vector Eqn. (7) must be obtained in order to estimate the spectral SNR of the

measurement. The DFT of Eqn. (7) is

1 N-1 j2wmp
K(p) = NE (m) e N

N-frmxmax / 27ralmd\ -p 2
irmp

N =0 'mn s (a) dau + mi s (a) cos do] e N (8)
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where K (p) represents the DFT of r (m).

The first term in the right hand side of Eqn. (7) is the total light within the bandpass

of the system and is determined by radiometric calculations. Here, this light is assumed to

be a constant value given by

- maxK (0) = ' s (o) dar (9)

Given the definition of the normalized Power Spectral Density (PSD) (13:164), and assuming

that s (o) is zero outside the bandpass measured by the detector, the normalized PSD can

be written as

S s(a) 
(10)f ,- a s ( u) d o,

and Eqn. (8) becomes

K(p) [K(0)+K(0) du e( )cos(2 fmd)dc]e-o (11)

Goodman states that when the two interfering beams are equal in intensity, the visi-

bility is the Fourier transform of the normalized PSD (13:162-164)

•)(T) = fa'max 6 (0,) cos (2?ruT) da (12)

" min

where T = lmd/f. Therefore, V (r-) can be substituted into Eqn. (11) to give

1 N-1 -j27np
K(p) - E [K(0)+K(0)?9(T)]e N

N-iN-1 K(0)i(r) y
N n=0

162wnp N-IELK(O)e6- N + ZK (0>()e N
Nn=O Nn=O

16



1 j- 2rn )N1 - (2rnpK (0) N e-0 +K(O)-NZo(T)e N (13)

Also note that
N-1 q • (_) e -j N (n) (14)

Nn=0

Substituting Eqn. (14) into Eqn. (13) gives

K (p) = K (0) 6 (p) + K (0) G(p) (15)

where 6 (p) is the Dirac delta function, with magnitude of one when p = 0 and magnitude

of zero elsewhere. Okamoto et al give the bin p to wavelength conversion as A = Nld/fp

(30:271).

Eqn. (15) shows that the DFT of the interferogram detected by the Sagnac interfer-

ometer yields a dc component, and an ac component determined by the normalized power

spectral density (PSD) of the source, & (p). For spectral SNR analysis, we are only con-

cerned with the SNR at a particular wavelength. Therefore, the dc term is ignored and Eqn.

(15) becomes

K (p) = K (0) G (p) (16)

The general SNR expression, for the case where the signal obeys Poisson statistics and

the noise is additive zero-mean Gaussian, is given as (14:2-10)

SNR= (17)
V/s + rhb + No,,.
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Figure 5. Satellite Observation Scenario. The telescope observes the light reflected from
the satellite surface materials.

where r, is the detected signal count, Kb is the detected background count, N is the number

of detector elements in the CCD array, and o',, is the read noise of a single CCD detector

element.

To further develop the Sagnac SNR expression, a relationship between K, and K (p)

must be found. Hrovat (14) studied the radiometry for the satellite scenario under inves-

tigation, see Fig. 5. The satellite is illuminated by the sun, and the telescope collects the

reflected light. In Hrovat's analysis, he assumed that the light passed through a spectral

filter prior to being sensed by the detector. He allowed the bandpass of the spectral filter

to be 5, 10, or 20 nm. The results of the Sagnac SNR derivation, Eqn. (16), show that

Hrovat's approach can be directly applied to this problem. The following is a brief summary

of Hrovat's derivation.
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Table 1. Values for well-known constants rounded to the value generally used in practice.
Constant Description Value Units
h Planck's constant 6.625 x 10-34 Joules-Second
c Speed of light in vacuum 3 × l08  meters/second
k Boltzmann's constant 1.38 x 10-23 Joules/Kelvin

First, he showed that the detected count from the background Kb is negligible when

compared to the detected count from the satellite K,, reducing Eqn. (17) to

SNR= (18)
,'K + NUcr.

The spectral irradiance on the satellite, assuming the sun is the sole source of illumi-

nation, is given by

Eaource (A) Mbb (A)('sun ) COS (92) (19)
\ sun/

where Ru is the radius of the sun, r8 un is the range, or distance, from the sun to the

satellite, 02 is the angle, as seen by the spacecraft, between the direction of the sun and the

direction of the satellite surface normal, and Mbb (A) is the blackbody exitance of the sun

and is given by Planck's law (4:54)

Mbb (A) 21rhc 2  (20)
A5 (e~kT - 1)

where h, c, and kB are familiar constants shown in Table 1. T is the temperature of the sun,

here assumed to be 5770 K.

19



Assuming the satellite to be a Lambertian scatterer (4:20), the spectral irradiance at

the sensor aperture is given by

ET(A)-AT cos (O1)
ET(A)- = rR2  p (A) Ta. (A) Esource (A) (21)

where AT is the surface area of the satellite, 01 is the angle between the direction of the

telescope and the direction of the satellite surface normal, Ta is the transmission of the

atmosphere, p (A) is the spectral reflectivity of the surface material on the satellite, and R

is the distance, or range, from the telescope to the satellite.

The total power on the detector is the product

d e (A) = AoTo (A) ET (A) (22)

where A, is the area of the telescope, and T, is the optical transmission. The irradiance on

the detector is the ratio of the total power on the detector to the total area of the detector

E(A) = 4Ie(A) (23)

which is physically the same as the quantity expressed in Eqn. (16)

E (A) = K (0) G (A) (24)

where the functional dependence on A was included by making the substitution p = Nld/f A.
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Goodman converts the irradiance into an electron count with the expression

K, (A) = aAdtdE (A) (25)

where a = 77 (A) A/hc, 77 (A) is the detector quantum efficiency, td is the detector integration

time, and E (A) is given either by Eqn. (23) or Eqn. (24) (13:493). Combining the above

equations gives the following expression for the signal count on the detector at wavelength A

K (A) Adtd p P(A)T.(A) Mbb (A) r I cos 02 (26)
hc Ad 7rR 2  \.u

which reduces to

K8 (A) = 2tdAQAT cos 01 cos 02Rsun- T (A) Ta (A) p (A) 17(A) (27)
sun A4 (eB')

with the substitution of Eqn. (20) for Mbb (A). Therefore, for the satellite observation

scenario in Fig. 5, the spectral SNR of the Sagnac interferometer is given by

SNR (A) (A) (28)
K8r, (A) + N0,'2

where K, (A) is as given in Eqn. (27).
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Table 2. Values chosen for radiometric models. These values are typical of those seen in
practice.

Variable Description Designated Value Units
A, Area of optic; 1.6 m dia. 2.0106 In2

01 Satellite-sensor angle 80 deg
02 Satellite-sun angle 80 deg
Rsun Radius of the sun 6.96 x 108 In

rsun Range from sun to satellite 1.5 x 1011 In

TO Optical transmission 0.4 NIA
Ta Atmospheric transmission 0.8 NIA
p Spectral reflectivity 0.5 NIA
7/ Detector QE 0.4 NIA
T Sun blackbody temperature 5770 K
N Number of detectors in Array 1024 N/A
Urn Detector read-noise 12

2.4 Expected SNRs using Radiometric Models

This section shows the results of applying Eqn. (27) and Eqn. (28) to possible satellite

observation scenarios. The results illustrate the range of possible signal-to-noise ratios for

observation of satellites using the Sagnac interferometer.

To simplify the analysis, but yet maintain realistic results, many variables in Eqn. (27)

were set to specified values as shown in Table 2. Note that the functional dependencies on A

for r,, Ta, p, and 7 were removed and 1/A4 (ehc/AkBT - 1) was evaluated over the wavelength

range under consideration, 300 nm to 1 pim. The constant values shown in Table 2 were

chosen under the conditions that they were representative of the mean value expected in

practice, and that they provided conservative estimates of the SNR when inserted into Eqn.

(27) and Eqn. (28). The remaining variables, td, AT, and R, were chosen in order to simulate

realistic scenarios and to illustrate their influence on the SNR.
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Table 3. Radiometric scenarios and results. The profile refers to the size of the satellite,
small or large, and the range to the satellite, LEO, U-LEO, MEO, and GEO. AT
is the total satellite surface area, and td is the detector integration time. The SNR
refers to the average SNR across the 300-1000 nm band.

Profile Range (km) AT (M2) td (S) SNR
Small LEO 1000 1 .01 28.13
Large LEO 1000 50 .01 274.67
Small U-LEO 5000 1 .10 5.06
Large U-LEO 5000 50 .10 144.31
Small MEO 20000 1 10 3.23
Large MEO 20000 50 10 151.35
Small GEO 40000 1 300 4.43
Large GEO 40000 50 300 217.56

The scenarios that were modeled are shown in Table 3. The values for the variables

in Table 3 were chosen with the following considerations in mind. The ranges R are typi-

cal of distances between satellite and ground-based telescope for low-earth orbiting (LEO),

upper low-earth orbiting (U-LEO), mid earth orbiting (MEO), and geosynchronous (GEO)

satellites. The satellite surface areas AT are realistic for both small and large satellites. The

detector integration times td were chosen with two considerations in mind: the result of the

observation, image or spectrum, and the resulting SNR. For observations at short ranges,

the performance of the Sagnac interferometer is suitable for imaging purposes, and td is

short such that atmospheric scintillation effects are reduced. At longer ranges, the imaging

capabilities of the Sagnac interferometer degrades and td is increased to provide sufficient

SNRs for spectrum measurements. The resulting average SNRs, shown in Table 3, are in an

approximate interval of 1 to 100. These SNRs are representative of those obtained by an

ideal Sagnac interferometer that measures the spectrum of an orbiting spacecraft.
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2.5 Summary

This chapter included an introduction to Fourier Transform Spectroscopy and the

Sagnac interferometer. The derivation of the SNR expression for the Sagnac interferometer

led to an expression, Eqn. (16), previously modelled by Hrovat (14) for ground-based ob-

servations of orbiting spacecraft. Therefore, Hrovat's radiometric analysis is applicable to

this research and is used to estimate the expected SNRs for data obtained from the Sagnac

interferometer, Table 3. The resulting SNRs are in the range of 1 to 300. The following

chapters provide percent composition estimates on data having average SNRs of 1, 10, and

100.
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III. Theory for Estimation of Percent Composition

Satellite surfaces are generally composed of many materials, with each material having

its own characteristic spectrum. In the scenario under investigation, Fig. 5, the Sagnac

interferometer measures the spectrum of the satellite. It is assumed throughout this effort

that the sensor in the Sagnac interferometer measures the solar illumination reflected by the

satellite in the wavelength range, 300 nm to 1 [ti. Each detector in the sensor's linear array

records the irradiance of the light in its associated spectral band.

The percent composition refers to the percentage of the total satellite surface area

that can be attributed to a single material, where as stated in Section 1.3 spectral mixing

is assumed to behave linearly. Eqn. (27) showed that the electron count K, (A) is directly

related to the satellite surface area AT and the spectral reflectivity p (A) of the material.

Defining a new variable -y (A) as the product of all variables in Eqn. (27) other than AT and

p (A) gives

K (A) = y(A)ATp(A) (29)

for the electron count (13). If the satellite's surface area is composed of two materials, the

count may be determined from

ra (A) = 7(A) (ATip1 (A) + AT2p2 (A)) (30)

where AT1 and P, (A) are the surface area and spectral reflectivity for the first material, and

AT2 and P2 (A) are the surface area and spectral reflectivity for the second material. By
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estimating y (A) from atmospheric and radiometric models and then normalizing Eqn. (30)

by y (A) and the total surface area, the normalized spectrum can be given by the expression

b (A) = X1p 1 (A) + X2P2 (A) + n (A) (31)

where x, and x 2 are the percent compositions for material 1 and material 2, respectively,

and n (A) represents the noise.

Eqn. (31) can be generalized to more than two materials and rewritten in matrix form

as

b= A- + n (32)

where A now represents an L-by-M matrix whose columns contain known spectral reflectiv-

ities of satellite materials, hereafter referred to as the material database. L is the number

of spectral bins and M is the number of satellite materials whose spectra are present in the

material database. Y is a M-by-1 vector representing the percent compositions for the r < M

materials that contributed to the observation b. This is now cast as an inverse problem-given

b, find 7 and evaluate the errors.

As mentioned previously, the objective of this research is to determine if the observation

resulting from the interferogram recorded by a Sagnac interferometer can be used in a system

that provides reliable estimates of the spacecraft's material composition. Three systems for

estimation of percent composition, or spectral unmixing, are proposed in this chapter along

with the theory for their implementation. The sections in this chapter include:
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Figure 6. Block Diagram of Three Proposed Systems

"* Introduction to the System Architectures

"* Concepts for Material Classification

"* Concepts for Constrained Linear Estimation

3.1 Introduction to the System Architectures

The block diagrams of the three systems for estimation of material compositions are

shown in Fig. 6. The first system uses a MLP to directly estimate the percent composition,

the second system uses a constrained least squares estimator, and the third system uses a

hybrid of both the MLP and the constrained least-square linear estimator in an attempt to

reduce the root-mean-square (RMS) error in the estimate. The remainder of this chapter

provides an introduction to the theory necessary for implementation of these systems.
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3.2 Concepts for Material Classification

Schalkoff defines pattern recognition as "the science that concerns the description or

classification (recognition) of measurements (28:2)." A common problem encountered in

pattern recognition is classifier design. A classifier labels a measurement into one or more

classes based upon some statistical, structural, or neural decision rule (28:4).

As an example, a problem encountered in Automatic Target Recognition (ATR) is the

design of a system that automatically distinguishes objects, such as tanks and jeeps. To

distinguish tanks from jeeps with high reliability may require that the length, height, and

weight be measured for each object and stored in a vector. This vector is referred to as a

feature vector, where each measurement is one of its elements. To train the classifier, the

feature vectors for the tank are compared with the feature vectors for the jeep. The data

used in this training stage is referred to as "training data", and requires that each feature

vector be labeled. After the classifier has been designed, it is tested with "test data" using

either a statistical, structural, or neural decision rule. The test data is independent of, but

similar to, the training data. The classifier assigns each test vector to the class, tank or

jeep, upon which it is most similar (28:14), without referring to the test vector's actual class.

Following classification of all test samples, the class assigned by the classifier to each sample

is compared to its actual class label to determine the test error rate.

The ability of a classifier to discriminate between classes is often apparent by visualizing

the feature vectors in feature space (28:13). In feature space, the coordinate for each axis

is given by an element of the feature vector. Fig. 7 shows a two-dimensional feature space
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Figure 7. Feature Space for Tank and Jeep Example

for the tank and jeep example, where the values for two of the features, weight and height,

are plotted along the axes. Based upon these features, the data points for the jeep (j) are

clearly separated from the data points for the tank (t), and a classifier should have little

difficulty separating the two classes. The features for most problems in pattern recognition

are more difficult to separate. In classification problems of greater difficulty, a classifier

distinguishes classes by partitioning the feature space into decision regions (28:15), where

each of the c possible classes is concentrated in its own specific region (unimodal distribution)

or regions (multimodal distribution). To aid the classifier in its performance, the designed

system chooses features such that features from data within the same class have minimum

covariance, while features from data in different classes have maximum covariance (28:92).
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3.2.1 Feature Extraction and Data Analysis. The features are chosen, or extracted,

using methods commonly presented in pattern recognition literature. The term "feature

extraction" refers to the process of extracting a lower dimensional feature vector from the raw

data that continues to represent the essence of the data (17:198). As stated in the previous

section, the extracted features should have minimum variation with data of the same class

and maximum variation with data of different classes. In this thesis, two approaches were

initially used to extract the features: Fisher discriminants, and principal component analysis

(PCA). The intermediate results illustrated that the Fisher discriminant method for feature

extraction yielded lower overall classification errors, and was therefore the chosen method

for feature extraction. The PCA method was thereafter used solely for data analysis.

3.2.1.1 Fisher Discriminants. The Fisher discriminants use the concept that

the degree of overlap in feature space between different classes is proportional to the distance

between their distributions and inversely proportional to their scatter,

(i 1 - 072)

where m, and M 2 are the mean value of the feature for the classes, and u,2 and a22 are the

variance of the feature for each class (22:177). In order to reduce the number of features

presented to the classifier, the Fisher discriminants are calculated for each feature in the

feature vector and then sorted from high to low value, the features associated with the

highest discriminants are retained and presented to the classifier (28:90). Although this

procedure for feature extraction is straightforward, it does not guarantee that the retained
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set of features are best for classification purposes. Fisher discriminants are discussed further

in Section 4.2.2.

2.2.1.2 Principal Component Analysis. The principal components of a data

set represent the selection of a coordinate system whose axes are along the directions of

maximum variance in the data (18:362). These directions are obtained by computing the

eigenvectors of the data's covariance matrix. The magnitude of the eigenvalue corresponding

to an eigenvector represents the variance in the data along the direction of that eigenvector.

For purposes of visual analysis, the data is projected into the plane of eigenvectors corre-

sponding to the two largest eigenvalues. This plane is called the principal component plane,

or simply the principal plane. Principal components are discussed further in Section 4.2.1.

3.2.2 The Parzen Classifier. A necessary assumption for the Parzen classifier is

that the decision regions be defined in probabilistic terms, and that all relavent probabilities

be known. The implementation of this classifier in the literature generally refers to the work

of Duda and Hart (7). They showed that if P (w3) is the a priori probability that nature is in

state wj, then the a posteriori probability P (wj Ix), interpreted as the conditional probability

of being in class wj given the observation x, can be computed from the conditional probability

density function (PDF) p(xjw3 ) by Bayes rule:

p (w3 Ix) = p (xlwj) P (w3 ) (34)

31



where
8

p(x) = p(xlwj) P ) (35)
j=1

is the total probability of observation x, and s is the total number of states.

The Bayes approach to classification is one of finding the P (wj) that minimizes the

overall error given by the expression (7:13)

+_0
p (error) = J P (error x) p (x) dx (36)

where P (errorIx) is the probability of error given the observation x.

For a c class problem, the classifier minimizes the error by assigning an unknown test

vector x to the class wi having the largest discriminant function (7:17). The discriminant

function is calculated for each of c classes by using the expression (7:18)

gi ( = p (X wI) P (wi) (37)
gp•.== P(XIWj) P (wj)

If P (wj) is assumed equal for all classes, then Eqn. (37) reduces to

gi (W = - (XIWO) (38)
Zj-x p (XIw,)

or gi (x) equals the normalized conditional PDF for its associated class. In determining class

assignment for the test vector, if

gi (x) > g3 (x) (39)

for all j 5 i then assign x to class wi.
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In practice, P (wi) and p (xlwi) are not perfectly known, and must be obtained from

data. The literature (28:58) refers to two approaches for estimating p (xlwi), based on

whether a functional form for the conditional PDF is assumed. Here, a nonparametric Parzen

Window approach (28:70) is taken where the functional form for the conditional PDF is not

assumed. Parzen introduced the Parzen window approach in 1961 (23). The Parzen estimate

of the conditional PDF for class wi given the observation x in some n-dimensional space (Rn)

is given by the expression (12:634)

1 N , I ' -xi

(X)k (E -) (40)

where x3i) represents each of the Ni samples in class wi, ki (') is a window function with a

volume of one in the n-dimensional set of real numbers Rn, and h controls the spread of

ki. The Parzen approach can be thought of as centering a unit volume window around the

observation vector x and using the percentage of the Ni samples that fall within the window

as an estimate of the conditional PDF. A commonly used window function is the Gaussian

function (7:23) written as

1 Gexp[-!(,--L)Y -(Y--) (41)

where - is a vector of the means for all F and E is the n-by-n covariance matrix. When used

as a Parzen window, the Gaussian function takes the form (20:32)

eP (x- x)] (42)
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Figure 8. Input/Output Diagram of a Single Perceptron (25:55)

and can be directly inserted into Eqn. (40) to estimate Pi (x).

3.2.3 The Multi-Layer Perceptron. Multi-Layer Perceptrons (MLP) are commonly

used as pattern classifiers in pattern recognition problems. A complete introductory treat-

ment on MLPs is beyond the scope of this thesis, and can be found in the literature (25)

(28).

A MLP is a network of single perceptrons, Fig. 8, interconnected in such a way to

efficiently classify input patterns. Each perceptron, introduced by Rosenblatt (26), separates

the feature space into two regions in a nonlinear manner. It does this in two stages. First,

it multiplies each of its inputs by a weight on the interconnection associated with that input

and computes a weighted sum over all inputs (a bias term is here assumed to be an input
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with weight of one and is included in the weighted sum, as shown in Fig. 8)

S= YiWij (43)
i

where xj is the total weighted input or actuation, yj is the output of the ith perceptron in the

previous layer, and wij is the weight of the connection between the ith and jth perceptrons.

Then, the perceptron uses a nonlinear function to transform the input into a single output

activity (25:55). Two nonlinear functions were used in this research, the sigmoid function

1
Yj- 1 + exp-xi

and the hyperbolic tangent function

exj i e-Xj

y exi + e-xi

shown in Fig. 9.

An MLP solves pattern recognition problems that require more than a linear decision

boundary in order to separate the data. The manner in which the perceptrons are inter-

connected are a topic of continual study. Cybenko showed that a three layer MLP provides

the needed complexity to solve any classification problem, given enough perceptrons in the

hidden layer (5). A three layer MLP consists of an input layer, a "hidden" layer, and an

output layer, Fig. 10. The input layer is simply a location for the data to be temporarily
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Figure 9. Sigmoid and Hyperbolic Tangent Functions

stored prior to being entered into the "hidden" layer. The "hidden" and output layers have

perceptrons that perform the transformations according to Eqn. (43) and Eqn. (44).

There are three primary concerns in the design of a MLP: the size of the network, the

time required to learn the decision boundaries, and the ability to generalize on data outside

the training set (15:16). Brief comments on network size and generalization are presented in

the following.

In a three-layer MLP, the size of the network refers to the total number of nodes in

the three layers. Choosing the network size is important. If the network is too small, the

MLP will not solve the problem, and if the network is too large, the MLP will oversolve

the problem (i.e. the weights will learn the training data), and provide poor generalization.
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Poor generalization refers to the situation where the classifier performs well on the training

data, but does not perform well on the test data. For a three-layer MLP, the number of

input nodes and the number of output nodes are defined by the pattern recognition problem

itself. Each input node is associated with a single element in the feature vector, and each

output node is associated with an output class assignment. No approach has been found

that chooses the optimal number of hidden nodes for a given problem (15:16), but useful

guidelines have been found that put upper limits on this number (29) (1). Huang gives

an upper bound on the number of hidden nodes as the number of training samples entered

into the network (29), and Baum confines this further by stating that, for greater than 90%

classification accuracy, the number of weights in the network should be less than one-tenth

the number of training samples (1:153).

The ability of a classifier to generalize is of concern because the ultimate goal of the

classifier is to properly classify measurements that have not been previously tagged. Foley
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demonstrated that for valid generalization there should be no more than three times as many

training samples per class as there are features within the feature vector (11). Baum and

Haussler (1) claim that the number of training samples for valid generalization is given by

W/IE, where W is the size of the network and E is the desired error rate on the test data.

After the neural network architecture has been chosen, the weights in the network are

trained. A common training algorithm used for many applications is the backward error

propagation algorithm, or simply the "backprop" algorithm (25:54). The training patterns

are presented to the network along with the desired outputs from the MLP. The backprop

algorithm updates the weights on the interconnections until either the error between the

desired output dj and the actual output calculated by the MLP yj,

E=1- E (yj - dj)' (45)

or until the classification error on an independent test set is reduced to a tolerable level.

Rogers et al. (25) give the following procedure for the backprop training algorithm:

1. Initialize the weights wij and biases to small random numbers

2. Present inputs and desired outputs to the network

3. Calculate the output from the neural net by calculating Eqn. (43) and Eqn. (44) for

each perceptron

4. Update the weights and biases using

3= w + 63jxi + ao (w- - w'-) (46)
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where wt is the updated weight, w- is the previous weight, and W-- is the weight before

the last update. a is the momentum, 77 is the learning rate, and xi is the output of node i.

For a sigmoid function, 6j is defined as (25:36)

J(dj - yj) yj (1- yj), for output node j6 = (47)
xi (1 - xi) Ek 6 kWjk, for hidden node j

whereas for a hyperbolic tangent function

6 (dj - yj) (I - y) , for output node j (48)

(1 - X?) Ek 6 kWjk, for hidden node j

where dj is the desired output, yj is the output calculated by the neural network, and xi is

the input to hidden node j.

After training the network by updating its weights, the MLP can be used as a clas-

sifier. Independent test samples are entered into the network and propagated through the

interconnections and weights using Eqn. (43) and Eqn. (44) to yield the output from the

MLP. The output signifies the class either directly or by some problem-specific classification

rule.

3.3 Concepts for Constrained Linear Estimation

As discussed in the introduction to this chapter, the spectrum, or observation, may be

modelled in matrix notation as

b 3= + (49)
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where - is an M-dimensional column vector, b and N_ are L-dimensional column vectors,

and A is an L-by-M matrix

all a 12 "" alM

a 21  a 2 2  ... a2M
A- (50)

aLl aL2 "'" aLM

with elements being the spectral reflectivities for the materials. For this research, the A

matrix is 28-by-9 which yields an "overdetermined least-squares problem". For high SNR

conditions, x can be estimated in a least-squares sense from a simple matrix multiplication

of the generalized inverse of the library matrix and the observed mixture

x= (A'A)_ A'- (51)

where the main difficulties lie in computing the generalized inverse of A. If the elements of

A are linearly dependent, or have small singular values, the estimate X of X will be inexact,

and small changes in b can cause large changes in x.

As noise levels increase, the estimate using Eqn. (51) becomes unreliable as can be

shown by the expression for the root-mean-square (RMS) error

1(52)
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Substituting the difference between the estimated and actual compositions

- =(A'~A) _ A'- - (A'A) _ At N' ) (53)

into Eqn. (52) gives

C ((AtAyl'Atg-)t ((AtAy1'AtN') (54)

as the RMS error. Thus for low singular values in A, (AtA)-' At becomes large and the

RMS error increases to unacceptable levels. Other methods of estimating X- under low SNR

conditions may be required.

An alternative method is to solve the problem in a least-squares sense and minimize

the residual

r = HIAd- •b2  (55)

subject to the constraints

xi > 0 i=l,...,M (56)

and
M

Exi = 1 (57)

A built-in MATLAB procedure in the MATLAB Optimization Toolbox was used in this

thesis to solve Eqn. (55), using an algorithm given by Lawson and Hanson (16:351).
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3.4 Summary

This chapter introduced the architectures and concepts chosen in this research for es-

timation of material composition. Three architectures were under investigation: a MLP

designed for direct estimation, a constrained least-squares linear estimator, and a hybrid

system using a MLP classifier and a linear estimator. Section 3.2 introduced pattern recog-

nition concepts, specifically those related to MLP and Parzen classifier design. Also included

in Section 3.2 was a discussion on feature extraction and data analysis. The Fisher discrim-

inant approach was chosen for feature extraction, and the PCA approach for data analysis.

The constrained linear estimation technique was discussed in Section 3.3. The following two

chapters provide results for both a single material problem, Chapter IV, and a two material

problem, Chapter V.
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IV. The Single Material Problem: Classification

This chapter provides classification results on "single material" data, where the term

"single material" refers to the situation where each data sample, or observation, consists of

the spectrum of a single material that has been corrupted by an additive Gaussian noise,

which is uncorrelated between spectral bins. Two classifiers were used in the single material

problem: a Parzen classifier and a Multi-Layer Perceptron (MLP). The objectives were to

baseline the MLP algorithm by comparing its performance with the Parzen classifier, and to

determine the expected level of performance of the classifier at low SNRs.

The simulated data resembles the data that is obtained by an ideal Sagnac interferom-

eter with the inclusion of an additive zero-mean Gaussian white noise and was generated as

described in Section 4.1. Once the data was created, the features were extracted and ana-

lyzed as explained in Section 4.2. Section 4.3 furthers the discussion given in Section 3.2.2

on the Parzen classifier and provides results when applying this classifier to single material

data. Section 4.4 provides a discussion on the design of the Multi-Layer Perceptron and

gives the results when the network was tasked to identify the material as in Section 4.3 for

the Parzen classifier. Finally, Section 4.5 provides a comparison of the results of the two

classifiers and a brief summary.

4.1 Data Simulation

The data used throughout this research was simulated using a material database con-

taining spectral reflectivities of nine common satellite materials (14). The spectral reflectiv-
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Figure 11. Spectral Reflectivities of the Nine Materials in the Material Database. The
numbers that are plotted along with the data are the material designations (1
through 9) used throughout this thesis and their corresponding SMC numbers
that were given in the original database.

ities of the materials were given in 5 nm increments for wavelengths between 300 nm and 1

/um, for a total of 140 spectral bands in each spectrum, see Fig. 11. The spectral reflectivities

for each material were entered into the data simulation software in the form of vectors, where

an element in the vector represented the spectral reflectivity at a particular wavelength of

light incident on the Sagnac interferometer's input aperture. The entire material database
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is represented by the matrix

all a 12  "'' aiM

a 2 1  a 2 2  • a2M

A- (58)

aLl aN2 aLM

where the column vectors represent the spectral reflectivities for each of the M (i.e. 9) satel-

lite materials, and the row vectors represent each of the L (i.e. 140) sampled wavelengths.

As discussed in the introductory section to Chapter 3, it was assumed that the photon

interaction with the surface of the satellite behaves in a linear fashion. The data for the

single material problem was therefore simulated using a linear relationship,

sl = aml + yyn, 1=1,... ,L (59)

which provides a simulated spectrum -= (s1,..., )sL)t consisting of the spectral reflectivity

for the material am corrupted by a zero-mean, unity-variance additive Gaussian noise, nj.

The noise term was selected randomly from a normal Gaussian distribution and 7 is a

constant that provides the variance in the data and allows the data to be simulated with the

desired SNR. The SNR at a particular wavelength, or spectral bin i, is expressed as

SNPý - (60)
U's
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Table 4. Average SNRs for Single Material Data. The SNRs are the ratio of the mean
to the standard deviation over all samples in the data file. The Train and Test
columns refer to the training data file and the test data file, respectively.

Material SNR = 1 SNR = 10 SNR = 100
Train Test Train Test Train Test

1 1.03 1.02 10.30 10.23 102.60 102.33
2 1.05 1.04 10.46 10.50 104.81 104.71
3 1.00 1.00 9.91 10.00 100.03 99.89
4 1.03 1.03 10.34 10.28 103.33 102.59
5 0.99 0.99 9.89 9.88 98.82 99.50
6 0.99 0.99 9.81 9.90 98.22 99.50
7 1.02 1.03 10.30 10.26 102.87 101.83
8 1.02 1.02 10.20 10.19 102.00 101.75
9 1.02 1.02 10.20 10.18 101.77 101.27

where -i is the mean and uas the standard deviation of the data set. In this research, 9i was

the spectral reflectivity in spectral bin i for one of the materials in the material database.

y was determined by trial-and-error so that the average spectral SNR of all samples within

the data file was properly modeled. After y was chosen such that the data modeled the

appropriate SNR, the data was stored in a data file.

Each data file contained 4500 observations, where 500 observations were associated

with each of the nine materials. The noise variance was chosen for data files with average

SNRs of approximately 1, 10, and 100, as shown in Table 4. There were a total of six data

files for the one material problem: a training file and a test file for each of the three SNR

conditions. The SNR conditions of 1,10, and 100, will hereafter be referred to as the Low,

Mid, and High SNR cases.
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4.2 Data Analysis and Feature Extraction

As mentioned in the previous section, each data file contained 4500 observations and

each observation contained 140 elements. The data contains the necessary information for

discrimination, but the number of features in each sample must be reduced in order to

decrease the complexity in the classifier stage, and to increase the practicality in obtaining

the required number of training samples in an actual system. This section explains the

feature extraction methods that were used to reduce the number of features from 140 to

a more manageable number, 28, and thereby reduce the complexity of the problem. As

discussed in Section 3.2, both principal components and Fisher discriminants were used

for analysis. The following provides a analytical discussion on both techniques for the one

material problem.

4.2.1 Principal Component Analysis. The data stored in each of the six data

files had multimodal distributions. Each data sample belonged to a 500 sample Gaussian

distribution, where the mean location of the distribution coincided with the entry for that

material in the material database. Rather than calculating the principal components for

the data in each data file, the principal components were calculated on the data in the

material database. The eigenvalues for the 10 principal components are shown in Table 5.

The magnitude of the eigenvalues correspond to the amount of variance present in the data

along the direction of its eigenvector. To help visualize classification difficulty on a given

data set, the data is projected into the plane containing the largest variance- the plane of
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Table 5. Principal Eigenvalues for Material Database. The variances are ranked from
largest to smallest magnitudes. The cumulative percent refers to percentage of
total data variance found in eigenvalues up to current entry. All 140 eigenvalues
summed to a value of 16.5753. The magnitude of each eigenvalue is rounded to
four significant digits beyond the decimal point.

Rank Magnitude Cumulative %
1 13.1025 79.05
2 2.1268 91.88
3 0.7943 96.67
4 0.4584 99.44
5 0.0843 99.95
6 0.0081 100.00
7 0.0008 100.00
8 0.0003 100.00
9 0.0000 100.00
10 0.0000 100.00

the first two principal components. As shown in Table 5, this plane contains 91.88% of the

total variation in the data.

Fig. 12 shows the projection of the data for the low SNR case. Only 20 samples are

displayed for each of the nine materials. In this projection, the data points for materials 6

and 7 are clearly separated from the data for the other materials and pose little problem for

the classifier, as will be shown later. However, the distributions for the other materials are

overlapping and may lead to large classification errors in this data.

The same projection for data of mid SNRs is given in Fig. 13. The data for each

material is more concentrated around its mean than for the low SNR case, as is expected for

Gaussian distributions. In this figure, there are only two overlapping distributions, those of

material 4 and material 5. Therefore, one can expect negligible classification errors for all
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Figure 12. Single Material Training Data Projected into Plane of First Two Principal Com-

ponents; Low SNR Case. The legend refers to the corresponding material des-

ignation and point type for data shown at same approximate height. Twenty

observations are shown for each material.

class-pairs except the 4-5 pair. It is probable that the 4-5 pair will result in classification

errors due to ambiguity caused by the overlapping distributions.

The projections for the high SNR data are shown in Fig. 14. Again, the data is more

concentrated around its mean, and the distributions for all class-pairs are clearly separated.

Therefore, on this data one would expect little or no classification errors for a properly

designed classifier.

4.2.2 Fisher Discriminants. As an additional approach in data analysis, a general-

ized Fisher discriminant was calculated for each class comparison. The Fisher discriminant

was used as a metric in determining the separation in the data, and also aided in the re-
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Figure 13. Single Material Training Data Projected into Plane of First Two Principal Com-
ponents; Mid SNR Case. The legend refers to the corresponding material des-
ignation and point type for data shown at same approximate height. Twenty
observations are shown for each material.

duction in the number of features presented to the classifier. As an example of the Fisher

discriminant, consider one of the data files: it contains 4500 samples, 500 from each of the

nine classes, designated class 1 through class 9. To compute the Fisher discriminant for data

in class 1 against data in class 2, calculate

N

F = ZfY2, (61)
i=1

where

(mli - m 2i)2
fi 2 ± 2 (62)

51l 0 2i
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is the Fisher ratio corresponding to the class 1 and class 2 comparison for the i-th feature

out of a total of N features. Since the data file contained samples for nine classes, 36

discriminants were obtained.

A generalized Fisher discriminant was also calculated for each of the 140 features using

the equation

fi = f (63)

j=i

where fji was obtained for the i-th feature as in Eqn. (62) and c was the total number of

class comparisons, 36. After the generalized discriminants were calculated, the 28 largest

were used as inputs to the classifier.
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The Fisher discriminants, both before and after feature extraction, calculated on the

low SNR training data are shown in Table 6. Conceptually, the larger the magnitude of the

discriminant, the greater the ability of any given classifier to correctly discriminate between

the classes. Since classifier discrimination ability on data subsets are always worse than on

the data itself, an increase in one of the entries in the table was not expected. Ideally, the

number of features are reduced considerably while the magnitude of the generalized Fisher

discriminant remains approximately the same. Shown in the lower portion of Table 6 are the

magnitudes for the generalized Fisher discriminants of the 28 features providing the largest

discriminants for this data set. An attempt to increase the magnitudes of the smaller entries

in Table 6 by hand-picking features resulted in a reduction in overall classification accuracy

for the system. Thus, the 28 features having the largest Fisher discriminants were used as

inputs to the classifier. A comparison of the Fisher discriminants, all 140 features, for the

low SNR case against those for the mid SNR case, Table 15, and the high SNR case, Table

16 (both located in Appendix A.1), illustrate that the classes with greatest similarity are

class 4 and class 5. This result was also determined previously using PCA. However, after

the features were reduced to 28, several class-pairs appear less separable than the 4-5 pair,

including pairs 5-9, 4-8, 2-8, and 2-4. The significance of these pair combinations will become

clear in the next section.

4.3 Performance of the Classifiers

The training data entered into the classifier consisted of 4500 samples of 28 features

each. The features were chosen using Fisher discriminants explained in the previous section.
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Table 6. Fisher Discriminants for Single Material Data; Low SNR Case
Discriminants using 140 Spectral Components

Class Class
1 2 3 4 5 6 7 8 9

1 0 16.04 32.61 21.36 22.44 153.58 130.31 15.32 37.42
2 0 13.81 5.32 9.56 133.39 114.67 4.30 13.47
3 0 23.63 26.21 113.16 97.15 27.88 18.42
4 0 3.45 139.50 129.28 4.65 10.15
5 0 138.83 135.97 9.18 13.95
6 0 184.83 129.78 152.17
7 0 113.86 146.49
8 0 19.83
9 0

Discriminants using 28 Spectral Components
Class Class

1 2 3 4 5 6 7 8 9
1 0 12.68 9.63 16.46 16.48 11.11 3.97 13.12 19.73
2 0 3.33 0.82 3.00 30.12 24.60 0.68 2.39
3 0 5.31 4.00 23.43 21.19 5.71 4.64
4 0 1.71 30.53 28.02 0.73 1.25
5 0 21.95 25.06 4.01 0.22
6 0 113.37 26.77 37.08
7 0 21.65 39.17
8 0 3.43
9 0
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This section provides classification results on this data using two classifiers: a Parzen classi-

fier, and a Multi-Layer Perceptron. The theory of the classifiers is presented in Chapter III.

Presented in the following are issues regarding the solution to the single material problem,

and the results that were obtained.

4.3.1 Results for the Parzen Classifier. As introduced in Section 3.2.2, the Parzen

classifier models the class distributions in probabilistic terms. The single material problem

consists of nine class distributions. The goal of the classifier is to identify the class that

a sample, whose class origin is unknown, is a member of. Errors frequently occur in class

associations of this sort, and a conventional means of displaying the errors are as entries in a

confusion matrix. The row of the matrix associates with the actual class of the object, and

the column of the matrix associates with the class assigned to the object by the classifier.

Therefore, diagonal entries are correct classifications and off-diagonal entries are incorrect

classifications.

The confusion matrix obtained by the Parzen classifier for low SNR data is shown in

Table 7. The errors, or off-diagonal entries, are largely attributed to the pairs 5-9, 4-8, 2-8,

and 2-4. As an example of the significance of this fact, of the possible 36 off-diagonal pairs,

46.7% of the 1655 errors are caused by the four pairs, or eight entries, that were flagged as

being troubled pairs using Fisher discriminants and principal component basis vectors. This

result illustrates the usefulness of these two approaches in increasing understanding of the

data in the classifier design stage. In summary of the performance of the Parzen classifier,
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Table 7. Confusion Matrix for Single Material Problem obtained from Parzen Classifier;
Low SNR Case

Actual Class Desired Class
1 2 3 4 5 6 7 8 9

1 437 6 54 0 2 0 0 0 1
2 3 221 79 35 34 0 0 7 121
3 15 2 475 0 0 0 0 0 8
4 1 140 8 112 75 0 0 31 133
5 0 48 44 35 110 0 0 3 260
6 0 0 0 0 0 500 0 0 0
7 1 0 0 0 0 0 500 0 0
8 1 166 5 112 38 0 0 149 29
9 1 38 95 2 22 0 0 1 341

the overall classification accuracies were 63.22% for low SNR data, 99.07% for mid SNR

data, and 100.00% for high SNR data.

4.3.2 Results for the Multi-Layer Perceptron. The MLP was trained using the

backprop training algorithm given in Chapter III. The architecture for the MLP consisted

of 28 input nodes, 12 hidden nodes, and 9 output nodes, as illustrated in Fig. 15. The input

nodes and hidden nodes both used the sigmoid function for nonlinearity. The approximate

upper limit on the number of hidden nodes was determined to be 11.6 based upon the rule

proposed by Baum: the number of weights in the network should be less than one-tenth

the number of samples (1:153). The actual number of hidden nodes used was determined by

trial-and-error by choosing the network configuration which provided the lowest classification

errors. A separate neural network was trained for each of the three SNR cases.

During the training phase, the samples were entered into the network in random order,

and the perceptrons transformed the weighted sums of the inputs using a sigmoid function.
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Figure 15. MLP Architecture for Single Material Problem

The weights in the network were updated based upon the error between the actual and

desired outputs. The desired output of a single output node was activated and the desired

output of the remaining eight nodes were unactivated. The activated node corresponded to

the class the sample originated from. The neural nets were trained for 1000 complete passes,

or epochs, through the training set.

The confusion matrix obtained by the MLP for low SNR data is shown in Table 8.

As with the Parzen classifier, the off-diagonal entries are largely attributable to the pairs

5-9, 4-8, 2-8, and 2-4: 55.1% of the 1528 errors are caused by these four pairs. The overall

classification accuracies are 78.04% for the low SNR case, 99.51% for the mid SNR case, and

100.00% for the high SNR case.
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Table 8. Confusion Matrix for Single Material MLP Classifier on Data with Average SNR
of One.

Actual Class Desired Class
1 2 3 4 5 6 7 8 9

1 457 3 8 0 1 3 26 2 0
2 4 240 41 51 15 0 0 99 50
3 11 47 390 0 16 0 0 3 33
4 1 101 13 147 56 0 0 118 64
5 2 38 35 35 233 1 0 14 142
6 0 0 0 0 0 500 0 0 0
7 1 0 0 0 0 0 499 0 0
8 5 101 9 94 14 0 0 265 12
9 0 53 18 44 136 0 0 8 241

Table 9. Classification Accuracies for Single Material Problem. Values shown are percent-
age correct classification on a test set of 4500 samples.

SNR Parzen MLP
Low 63.22 78.04
Mid 99.07 99.51
High 100.00 100.00

4.3.3 Comparisons of Results for the Two Classifiers. The classification accuracies

for the Parzen classifier and the MLP are shown side-by-side in Table 9. The performance

of the two classifiers on the mid and high SNR data files are very agreeable. The difference

in the results for the low SNR case can be attributed to three primary causes: the increased

noise in the data, systematic errors in the training methods of the two classifiers, and the

fact that the results for the MLP represent one sample of a stochastic random process.

The results of the Parzen classifier for the low SNR data was very sensitive to the width

of the Parzen window. A small change in window width resulted in a very large change in

classification accuracies. Nonetheless, the comparable results in Table 9, especially for the
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mid and high SNR cases, indicate that the MLP performs as expected.

4.4 Summary

Included in this chapter were the single material classification results for the Parzen

classifier and the Multi-Layer Perceptron. Prior to the presentation of the results, an in-depth

examination of data simulation, and feature extraction, was presented. The analysis using

Fisher discriminants and principal components gave valuable insight into potential system

classification errors. For the low SNR data, both approaches identified the four class-pairs

providing the largest classification errors. However, overall the classification performance

of the Parzen and the MLP agreed favorably, especially for the mid and high SNR cases.

The approach taken in analyzing the single material data will now be applied to the percent

composition estimates using two material data.
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V. The Two Material Problem: Abundance Estimation

In this chapter, the observation contains the spectra of two of the nine materials. A

re-cap of the three architectures considered for this problem is discussed in Section 5.1.

The MLP approach is given in Section 5.2, and data analysis and feature extraction for the

remaining two approaches are addressed in Section 5.3. The results of the linear estimator

approach are given in Section 5.4, and Section 5.5 provides the results for the combined

system. Finally, Section 5.6 yields a comparison of results and a brief summary.

5.1 The Three Architectures Revisited

The solution to the two-material problem requires knowledge of the materials that

contributed to the observation as well as an estimate of their compositions, x, and x2 = 1 -

Xi. This chapter analyzes the two-material problem by implementing the systems proposed

in Section 3.1. The MLP approach uses an artificial neural network designed such that

the desired output equals the percent composition. Therefore, the actual output from the

network is an estimate of the material composition. The linear estimation approach uses a

constrained least-squares linear approach for estimation. The hybrid approach consists of a

MLP classification stage followed by a constrained least-squares estimator. The remaining

sections in this chapter discuss the results for system implementation.
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5.2 MLP Approach

As stated in the previous section, the MLP approach uses an artificial neural net to

directly estimate the percent composition. The samples introduced to the network contained

a linear combination of the spectra for materials 1 and 2. The composition of material 1

was determined through a random number generator, and that of material 2 was constrained

such that the total compositions for the two materials summed to one. Therefore, the two

material data is described by the expression

si -= x1aii + (1 - xi) a 2i + -yni i=1,... ,N (64)

where 8- = (si,... , IsN)t represents the observation, x, represents the composition for the

first material, and a- and d- are the elements of the material spectral database for the two

materials contributing to the mixture, respectively, as given in Eqn. (59). -y and ni are also

as defined for Eqn. (59).

Eqn. (64) was used to create 5000 observations consisting of random contributions

from material 1 and material 2. Rather than using the entire 140 spectral bins in simulation,

every fifth bin was used, which yielded data consisting of 28 dimensions. All 28 dimensions

were entered into the neural network as features. The interconnection diagram for the MLP

is shown in Fig. 16. Two outputs were used, each representing the estimate of the percent

composition for one of the two materials. The backprop training algorithm performed the

weight update where the perceptrons used the sigmoid function for nonlinearity. The MLP

was trained for 1000 epochs. The results applied to the test data, shown in Fig. 17, indicate
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the level of performance of the MLP for estimation of percent composition. The estimate at

low SNRs is corrupted by the randomness of the data, as is clearly shown.

Due to the poor results of the MLP approach and the time required for training the

weights, the MLP was eliminated from consideration as a practical device for direct estima-

tion. The number of required training samples for problems dealing with concentrations of

more than two materials was simply overwhelming. Also, the poor performance of the MLP

in a very controlled environment, as presented here, yields little hope of practical implemen-

tation of the MLP in this application. The following section discusses the data simulation,

analysis, and feature extraction for the remaining two approaches used in this research.
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for the MLP, and overlaid on the diagonals are the compositions estimated by
the MLP. The subplots represent data with the following average SNRs: a) 1,
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5.3 Data Simulation, Analysis, and Feature Extraction

This section provides analysis on the two material data similar to that performed on

the single material data in Chapter IV. Included in this section are data simulation, data

analysis using principal components, and feature extraction using Fisher discriminants.

5.3.1 Data Simulation. The data was simulated using Eqn. (64). Each data file

contained 4500 samples. There were a total of 36 possible combinations of the nine materials

taken two at a time, and therefore each two-material grouping, or set, had 125 samples. The

generation of large data files with several requirements, such as random concentrations, 36

subsets, and constant SNRs, becomes very computationally intense. Therefore, rather than
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forcing the data file to have a constant SNR level, the samples within the data file were

generated using the single material data. Two samples from the single material data were

scaled by the appropriate percent composition and summed to yield the composite spectrum.

As an example, let bi represent an observation of single material data for material i, and bj

represent an observation of single material data for material j. A two material observation

containing both the spectrum of material i and the spectrum of material j is modeled as

b= Xbi + X2bj (65)

where x, is the abundance for material 1, and x2 = 1 - x, is the abundance for material
2. Both bi and 6 contain an additive zero-mean Gaussian noise term, which results in a

variable spectral SNR for the data. The spectral SNR lies in the range 1 < SNR < 1.4

for the low SNR data, the range 10 < SNR < 14 for the mid SNR data, and the range

100 < SNR < 140 for the high SNR data. However, due to additional variance introduced

in each data file by random material concentrations, the effective SNR of these files are much

lower.

5.3.2 Principal Component Analysis. The two material data has characteristics

that are desirable for principal component analysis. When the endmembers, defined as the

spectra for the materials in the material database, are projected into the principal plane,

a scatter plot results as shown in Fig. 18. Under noise-free conditions, a composite of

two materials will yield a data point located at a point between the two corresponding

endmembers. The ratio of distances between the data point and the endmembers is directly
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Figure 18. Endmembers Projected into PC Plane

related to the ratio of the compositions attributed to the endmembers. For example, a

composite consisting of 50% material 1 and 50% material 7 will be located at coordinate

(-2.54, 6.96), midway between the two endmembers. With the addition of a zero mean

Gaussian noise, the distribution of all similar data points will be located in a cloud of points

centered around their mean location and whose variation is dependent on the magnitude of

the noise variance.

The two material training data is shown projected in the principal component plane

in Figs. 19-21. The pluses represent projections for material 1 data, and the minuses

represent projections for data of other materials. The projections for the low SNR data, Fig.

19, are distributed in random fashion rather than linearly as discussed above. However, the

projections for the mid and high SNR cases, Figs. 20 and 21, do show the linear characteristic
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as described in the previous paragraph. Analysis on the scatter plots yield a visual indication

of the classification difficulty for the two material problem. The projected data for material

1 have overlapping distributions. A survey of similar scatter plots for materials 2 through

9, Figs. 25-48, give similar conclusions. In the areas of overlap, a well-trained classifier will

continue to misclassify samples. Because of this apparent overlap in the principal component

plane, classification errors will tend to be high on this data. In addition, the low accuracies

for the low SNR case will also result because the distributions in the principal component

plane are more random and it is more difficult to fit a linear decision boundary between the

different classes.
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5.3.3 Fisher Discriminants. The Fisher discriminants were calculated for the two

material data as given by Eqn. (63). After the Fisher discriminants for each of the 140

features in a data file were calculated, their sum was regarded as a generalized discriminant

for the file. As was performed for the one material data, the features were then extracted by

choosing the 28 features that provided the largest discriminants. A comparison of generalized

Fisher discriminants for each data file gives an indication of the relative level of difficulty

in designing a classifier for the data within each. The generalized Fisher discriminants both

before and after feature extraction are given in Table 10. A comparison of the values in Table

10 to those of the single material data, Tables 6, 15, and 16, show that the classification

performances at low SNRs are expected to be comparable, but at mid and high SNRs,
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the performance for the two material data should be much lower than that for the single

material data. The reason for this is that each sample now contains a linear combination

of two material spectra. The distributions for each material in the two material composites

are no longer concentrated in a small region in feature space, as is clearly illustrated in the

analysis of the previous section. This effect is lessened on the low SNR data because of the

inherent randomness in this data.

Also shown in Table 10 are indications that the largest classification errors should

associate with classifications on material 2 and material 3, and the lowest errors should

associate with material 6 and material 7.
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Table 10. Generalized Fisher Discriminants for Two Material Problem
Material 140 Features 28 Features

Low Mid High Low Mid High
1 6.27 33.86 36.60 3.40 16.16 16.85
2 2.01 9.81 10.13 1.05 5.12 5.39
3 1.06 4.29 4.97 0.44 1.46 1.69
4 5.35 28.22 29.55 2.05 8.94 9.45
5 6.62 37.20 38.60 2.31 13.77 14.14
6 25.68 149.37 141.94 6.97 38.96 36.80
7 22.95 104.07 124.20 6.89 30.47 36.28
8 9.03 59.65 67.34 3.14 26.19 29.84
9 4.53 24.75 24.93 1.67 8.97 8.94

5.4 Linear Estimator Approach

As discussed in Chapter III, a direct solution to the estimation problem is to solve it

in a least-squares sense by minimizing the residual

r = IIAr- bl2 (66)

subject to the constraints

xi > 0 i=1,...,M (67)

and
M

= 1 (68)
i=1

The results obtained by using this approach are given in Table 11. The mean errors for

the low SNR data are 28.55% in estimating compositions in material presence and 13.23%

in estimating compositions in material absence. The greatest RMS errors are in detecting
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Table 11. Errors in Estimates using Linear Technique. el refers to the RMS error of the
estimate when spectrum of material present in composite. co refers to RMS error
of estimate when spectrum of material not present in composite. Et is the total
RMS error for the estimate. The mean values are the average RMS error across
all nine materials.

Material Low SNR Mid SNR High SNR
Ei E0  Et Ei E0  Et El E0  Et

1 .1313 .0833 .0961 .0153 .0095 .0111 .0016 .0009 .0011
2 .4396 .1892 .2661 .1996 .0756 .1153 .0225 .0088 .0132
3 .4995 .0636 .2421 .2675 .0167 .1270 .0371 .0022 .0176
4 .3513 .1476 .2106 .0538 .0325 .0382 .0062 .0042 .0047
5 .2230 .1265 .1533 .0293 .0187 .0215 .0029 .0020 .0023
6 .1746 .1020 .1219 .0469 .0551 .0534 .0057 .0078 .0074
7 .1962 .2097 .2068 .0340 .0316 .0321 .0032 .0034 .0033
8 .3824 .1277 .2125 .1084 .0716 .0812 .0127 .0080 .0092
9 .1718 .1414 .1487 .0210 .0196 .0199 .0022 .0020 .0021
mean .2855 .1323 .1842 .0862 .0368 .0555 .0105 .0044 .0068

presence of either material 2 or material 3, and are approaching 50% for the low SNR case.

As previously stated, the generalized Fisher discriminants given in Table 10 are also lowest

in value for the material 2 and material 3 entries. Surprisingly, the entries in Table 11 for

material 1 and material 9 are comparable to those of materials 6 and 7, a result not apparent

from Fisher discriminants alone. Overall, the constrained linear estimator provided estimates

with average errors of 18.42% for the low SNR case, 5.55% for the mid SNR case, and 0.68%

for the high SNR case.

5.5 Hybrid Approach

The hybrid approach to estimation of percent composition is discussed in this section,

with reference to the configuration illustrated in Fig. 22. The classification errors for the
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MLP are given in Table 12. Each two element entry in Table 12 allows the complete

reconstruction of the confusion matrix obtained in classification. For instance, the first row

of data has el and co values equal to .159 and .0063, respectively. el refers to the fraction

of the 1000 samples, containing the scaled spectrum for material 1, that were misclassified.

Hence, there were 159 misclassifications and 841 correct classifications when the spectrum

of material 1 was included in the composite. co refers to the fraction of the remaining 3500

samples (those which do not contain scaled spectrum of material 1) that were misclassified.

Therefore, 22 of the 3500 samples were mis-tagged, leaving 3478 that were properly identified
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Table 12. Error Rates for Confusion Matrix Resulting from MLP Classifier. El refers to the
rate at which the classifier determines material not present, when the material
actually was present. co refers to rate at which classifier determines material
was present, when the material actually was not present. An el of zero indicates
that all 1000 samples containing the materials spectrum were properly classified,
and an 6o of zero indicates that all 3500 samples not containing the materials
spectrum were properly tagged as such.

Training Data Test Data
No. Low SNR Mid SNR High SNR Low SNR Mid SNR High SNR

61 CO 61 O 61 CO E1 EO 61 CO 61 60

1 .159 .0063 .059 .0069 .010 .0006 .421 .0577 .179 .0271 .022 .0011
2 .361 .0229 .229 .0486 .073 .0274 .743 .1169 .390 .1031 .091 .0360
3 .424 .0169 .233 .0383 .201 .0426 .753 .1026 .404 .0980 .221 .0514
4 .416 .0371 .326 .0254 .047 .0034 .723 .1240 .447 .0654 .061 .0091
5 .254 .0249 .053 .0003 .000 .0000 .596 .1086 .071 .0074 .000 .0000
6 .260 .0386 .349 .0437 .149 .0191 .525 .1143 .445 .0717 .162 .0226
7 .367 .0414 .354 .0471 .225 .0177 .546 .1049 .466 .0734 .213 .0157
8 .229 .0283 .221 .0140 .128 .0026 .572 .1054 .343 .0417 .138 .0040
9 .194 .0103 .417 .0446 .167 .0183 .446 .0891 .624 .0811 .176 .0266

as not containing the spectrum of material 1 within the composite. The confusion matrix

for this entry, low SNR training data for material 1, is therefore given as

841 159
cm 78 (69)

22 3478

In comparison of all entries in Table 12, the largest entries correspond to those of 61.

This is a direct result of allowing the weights in the MLP to be updated equally by the

magnitude of the squared errors for each sample entered into the network. Because there

were three-and-a-half times as many samples not containing the spectrum of the material

as opposed to those that did, the network was biased toward lower values of E0, rather than
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Figure 23. ANN Rankings for First Material in Two Material Composite for the Low SNR
Case.

lower values of el. This is a classical probability of detection and probability of false alarm

design trade. If estimation errors are mainly caused by large values of E1 , then more emphasis

must be placed on lowering el by choosing an appropriate weight update strategy. However,

lower cl values generally imply larger co values, and the design requires choosing training

strategies and comparing estimates obtained from each strategy. This comparison will yield

the design providing the lowest errors. In this research, little time was devoted to this design

trade.

A summary of the errors in abundance estimates for the hybrid approach is provided

in Table 13 for the low SNR case, and Tables 17 and 18 for the mid and high SNR cases.

The values for n represent the number of endmembers whose spectrum were allowed to be

a component of the A matrix in Eqn. (66), or the follow-on linear estimation stage. The
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actual n endmembers which contributed were determined by the output of the nine neural

networks. Each neural net was designed to determine presence or non-presence of a certain

material spectrum within the composite. The sample was introduced to all nine networks,

and each network determined if its associated material spectrum was present. Outputs from

the MLP approaching the value of one represented material presence, and output values

approaching the value of zero represented material absence. The outputs from all nine

networks were rank ordered and the materials associated with the largest n outputs were

used in the A matrix. Figs. 23a and 24a show the relative importance, or ranking, assigned

to the two materials whose spectra were actually present in the composite, for the low SNR

case. Similar plots for the mid SNR and high SNR cases are given in Figs. 49-52. Fig. 23b

and 24b illustrate that for the low SNR case, all nine endmembers must be included in the A
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Table 13. Errors in Estimates using Hybrid Approach; Low SNR Case. n spectra were used
in the database entered into the linear estimator. c, refers to the RMS error of
the estimate when spectrum of material present in composite. 6o refers to RMS
error of estimate when spectrum of material not present in composite. 't is the
total RMS error for the estimate. The mean values are the average RMS error
across all nine materials.

Material n=3 n=4 n=5
ei C0  Ct EI C0  Ct CI C0  Ct

1 .2153 .0634 .1158 .1951 .0612 .1067 .1782 .0648 .1016
2 .4431 .2367 .2953 .4295 .2276 .2851 .4225 .2152 .2751
3 .3926 .2889 .3149 .3864 .2258 .2699 .4164 .1661 .2449
4 .3539 .2025 .2444 .3332 .1909 .2303 .3241 .1832 .2224
5 .3405 .1051 .1854 .3081 .1087 .1740 .2826 .1115 .1656
6 .2626 .1017 .1529 .2246 .0879 .1312 .1942 .0990 .1265
7 .2542 .1195 .1596 .2233 .1243 .1519 .2148 .1447 .1629
8 .4096 .1480 .2331 .4021 .1439 .2281 .3882 .1377 .2196
9 .2814 .1054 .1620 .2561 .0950 .1470 .2326 .1014 .1415
mean .3281 .1524 .2070 .3065 .1406 .1916 .2948 .1360 .1845
Material n=6 n=7 n=8

61 60 ft E1 CO ft f1 60 Et

1 .1629 .0705 .0988 .1426 .0749 .0942 .1377 .0792 .0954
2 .4243 .2111 .2732 .4269 .2047 .2704 .4343 .1996 .2700
3 .4471 .1342 .2417 .4737 .1154 .2454 .4896 .0982 .2465
4 .3285 .1747 .2185 .3341 .1660 .2150 .3408 .1575 .2124
5 .2632 .1204 .1633 .2438 .1234 .1583 .2250 .1267 .1541
6 .1786 .1040 .1245 .1749 .1023 .1222 .1740 .1018 .1216
7 .2063 .1711 .1795 .2010 .1912 .1935 .1977 .2046 .2031
8 .3910 .1334 .2186 .3912 .1278 .2161 .3892 .1268 .2148
9 .2200 .1102 .1421 .2077 .1177 .1427 .1952 .1267 .1447
mean .2913 .1366 .1845 .2885 .1359 .1842 .2870 .1357 .1847
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matrix if misclassification errors are not to increase errors in the estimation of the abundance.

Similarly, the mid and high SNR data require all nine endmembers, but the increased errors

in abundance estimation attributed to misclassification should not be as noticeable for lower

number of endmembers included in A because the cumulative distributions have almost

completely converged for n equal to six.

The errors shown in Table 13, 17, and 18, all follow similar trends: from low to high

values as n decreases from eight to three. Therefore, in this design, the misclassifications

due to the MLP are directly degrading the performance of the linear estimator.

5.6 Summary

Table 14 is provided for additional comparisons of the linear estimator approach to

the hybrid approach. An n equal to nine represents the linear approach, and the row for n

equal to two illustrates the best possible performance of the linear estimator on this data.

This row assumes that the linear estimator has a classifier stage preceding it that has 100%

classification accuracy. Therefore, the A matrix can be reduced to two columns, each column

associated with one of the two materials present within the composite.

The table clearly illustrates that the linear estimator provides lower RMS errors, as

opposed to the Hybrid approach, for all three data files. The trend of increasing errors as n

decreases is apparent in each column. This trend is a direct result of the large classification

errors resulting from the MLP. Some of the errors in c1, shown in Table 14, are due to the

weight update method implemented for the MLP. Further investigation should address the
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Table 14. Comparison of mean RMS Errors; Linear Approach vs Hybrid Approach. 61
refers to the mean RMS error of the estimate when spectrum of material present
in composite. co refers to mean RMS error of estimate when spectrum of material
not present in composite. et is the total mean RMS error for the estimate. n is
number endmembers included in database before linear estimation stage. An n
equal to nine (i.e. top row), the complete database, uses the linear approach to
abundance estimation.
n Low SNR Mid SNR High SNR

€1 CO Et C1 60 'Et e1 O et

9 .2855 .1323 .1842 .0862 .0368 .0555 .0105 .0044 .0068
8 .2870 .1357 .1847 .0910 .0371 .0572 .0246 .0129 .0202
7 .2885 .1359 .1842 .0926 .0372 .0577 .0260 .0140 .0217
6 .2913 .1366 .1845 .0966 .0383 .0590 .0339 .0178 .0241
5 .2948 .1360 .1845 .1103 .0461 .0671 .0429 .0244 .0309
4 .3065 .1406 .1916 .1424 .0600 .0868 .0577 .0279 .0387
3 .3281 .1524 .2070 .1855 .0847 .1168 .0784 .0316 .0477
2 .1884 .0282 .0031

weight update issue and attempt to lower the values for the e1 and CO entries in Table 13

such that the decision made by the MLP aids the performance of the linear estimator and

reduces the errors in Table 14 as n decreases.
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VL. Conclusions and Recommendations for Future Research

The research conducted in this thesis had one overall objective: to determine if the

interferogram obtained by the Sagnac interferometer could be used by a system to estimate

satellite material compositions. The approach implemented first introduced the Sagnac

interferometer and determined its expected level of performance. Based upon the estimated

level of performance, data was simulated that had representative noise levels.

The simulated data was used in two problems: a single material problem, and a two

material problem. The single material problem was developed to introduce pattern recogni-

tion concepts and to baseline the performance of the MLP. The two material problem yielded

the percent composition estimates for three proposed architectures: a direct approach using

the MLP, a constrained least squares approach, and a hybrid approach.

Of the three approaches, the constrained least squares approach provided estimates

with the lowest RMS errors: 18.42% for low SNR data, 5.55% for mid SNR data, and 0.68%

for high SNR data. Also, the constrained least squares approach is most practical in terms

of ease of implementation. In this thesis, as developed and presented, the hybrid approach

yielded slightly larger errors, 18.47% for low SNR data, 5.72% for mid SNR data, and 2.02%

for high SNR data, than those obtained using the linear estimator alone. In the presence

of non-ideal effects, such as atmospheric scintillation, and system transfer function, the

hybrid approach may provide a more robust design that makes it a more practical approach.
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With this in mind, several issues are left unanswered and may provide topics for further

investigation:

"* Will a new weight update strategy improve classifier performance such that the hybrid

approach provides better estimates?

"* Will the introduction of non-ideal circumstances into the model show that the hybrid

approach provides better estimates?

"* How does the approach presented in this thesis relate to actual data measured by the

Sagnac interferometer?

The material in this thesis, as presented, clearly illustrate that the Sagnac interferometer can

be used for material composition estimates under ideal circumstances. The percent errors are

tolerable (i.e. < 10%) for data with average SNRs of 10 or greater, and radiometric results,

Table 3, indicate that these SNRs are possible with this instrument. The questions stated

above will help determine whether the Sagnac interferometer can be used for estimation of

material compositions under more practical circumstances.
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Appendix A. Analysis and Results
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A.1 Fisher Discriminants for Single Material Data

Table 15. Fisher Discriminants for Single Material Data; Mid SNR Case
Discriminants using 140 Spectral Components

Class Class

1 2 3 4 5 6 7 8 9
1 0 1509 3172 2039 2106 15308 12916 1463 3684
2 0 1311 507 880 13213 11374 402 1298
3 0 2327 2517 11073 9497 2717 1751
4 0 298 14030 13003 420 992
5 0 13680 13361 836 1373
6 0 18444 12948 15224
7 0 11405 14649
8 0 1915
9 0

Discriminants using 28 Spectral Components
Class Class

1 2 3 4 5 6 7 8 9
1 0 1324 969 1720 1605 881 223 1380 2081
2 0 280 71 216 2915 2480 65 197
3 0 488 327 2390 2213 511 450
4 0 139 3026 2813 55 108
5 0 2144 2398 309 9
6 0 10280 2595 3870
7 0 2190 4083
8 0 281

9 0
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Table 16. Fisher Discriminants for Single Material Data; High SNR Case
Discriminants using 140 Spectral Components

Class Class
1 2 3 4 5 6 7 8 9

1 0 149900 316600 204800 210400 1521200 1285300 148300 365400
2 0 131600 51600 89100 1325700 1140100 40400 129400
3 0 233500 253100 1127200 966300 272700 175600
4 0 29800 1400800 1299000 43000 98700
5 0 1366300 1334600 84800 135000
6 0 1866500 1295800 1514800
7 0 1138600 1457400
8 0 190800
9 0

Discriminants using 28 Spectral Components
Class Class

1 2 3 4 5 6 7 8 9
1 0 131300 97300 172100 160200 84600 21200 140000 207600
2 0 28100 7300 22700 287400 241800 6600 20600
3 0 49700 33000 244700 227000 52300 45700
4 0 14000 305500 284700 5500 10800
5 0 209700 235800 32000 900
6 0 1043000 264000 385300
7 0 221600 407500
8 0 29100
9 0
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A.2 Two Material Data shown Projected in Two Principal Component Plane
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Figure 25. Two Material Training Data Projected into PC Plane: Low SNR Case. Material
2 data shown with pluses and other material data shown with circles.

10

2- + ý 00 , g

0
0 10

S-4 o - 0

0 0
00,

-64@ -4'-2 0 2048

15ob
COO

Principal Component # 2

Figure 26. Two Material Training Data Projected into PC Plane: Mid SNR Case. Material
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Figure 27. Two Material Training Data Projected into PC Plane: High SNR Case. Material
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Figure 34. Two Material Training Data Projected into PC Plane: Low SNR Case. Material
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Figure 37. Two Material Training Data Projected into PC Plane: Low SNR Case. Material
6 data shown with pluses and other material data shown with circles.
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Figure 39. Two Material Training Data Projected into PC Plane: High SNR Case. Material
6 data shown with pluses and other material data shown with circles.
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Figure 40. Two Material Training Data Projected into PC Plane: Low SNR Case. Material
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Figure 41. Two Material Training Data Projected into PC Plane: Mid SNR Case. Material
7 data shown with pluses and other material data shown with circles.
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Figure 45. Two Material Training Data Projected into PC Plane: High SNR Case. Material

8 data shown with pluses and other material data shown with circles.
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Figure 47. Two Material Training Data Projected into PC Plane: Mid SNR Case. Material
9 data shown with pluses and other material data shown with circles.
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A.3 ANN Rankings for Two Materials whose Spectra are in the Composite Spectrum
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Figure 49. ANN Rankings for First Material in Two Material Composite for the Mid SNR
Case.
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A.4 Errors in Estimation of Percent Composition: Hybrid Approach
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Table 17. Errors in Estimates using Hybrid Approach; Mid SNR Case. n spectra were used
in the database entered into the linear estimator. c, refers to the RMS error of
the estimate when spectrum of material present in composite. co refers to RMS
error of estimate when spectrum of material not present in composite. Et is the
total RMS error for the estimate. The mean values are the average RMS error
across all nine materials.

Material n=3 n=4 n=5
_I _ 0 et EI O e_0t _I _ 0 Ct

1 .0985 .0239 .0510 .0819 .0095 .0395 .0516 .0069 .0251
2 .2420 .1539 .1773 .2255 .1147 .1467 .2089 .0917 .1274
3 .2550 .1851 .2027 .2155 .1253 .1501 .1817 .0801 .1110
4 .1731 .0927 .1155 .1181 .0663 .0807 .0744 .0492 .0558
5 .0734 .0207 .0391 .0673 .0169 .0351 .0644 .0124 .0323
6 .2385 .0747 .1303 .1764 .0555 .0965 .0878 .0525 .0621
7 .1690 .0734 .1027 .1190 .0465 .0695 .1011 .0299 .0545
8 .2201 .0783 .1247 .1690 .0816 .1074 .1400 .0769 .0946
9 .1995 .0597 .1078 .1090 .0240 .0556 .0827 .0152 .0412
mean .1855 .0847 .1168 .1424 .0600 .0868 .1103 .0461 .0671
Material n=6 n=7 n=8

61 6o ft El Eo ft E, 6o Et
1 .0325 .0073 .0166 .0188 .0092 .0120 .0145 .0108 .0117
2 .2011 .0742 .1152 .1936 .0653 .1079 .1863 .0805 .1129
3 .2003 .0351 .0994 .2391 .0262 .1151 .2569 .0177 .1221
4 .0538 .0403 .0437 .0519 .0385 .0419 .0534 .0362 .0407
5 .0607 .0101 .0300 .0577 .0133 .0296 .0492 .0139 .0263
6 .0595 .0646 .0635 .0455 .0686 .0642 .0437 .0630 .0593
7 .0935 .0222 .0482 .0846 .0253 .0457 .0699 .0260 .0401
8 .1152 .0758 .0861 .1055 .0712 .0801 .1165 .0672 .0808
9 .0530 .0150 .0283 .0371 .0169 .0230 .0284 .0186 .0212
mean .0966 .0383 .0590 .0926 .0372 .0577 .0910 .0371 .0572
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Table 18. Errors in Estimates using Hybrid Approach; High SNR Case. n spectra were
used in the database entered into the linear estimator. el refers to the RMS
error of the estimate when spectrum of material present in composite. c0 refers
to RMS error of estimate when spectrum of material not present in composite.
et is the total RMS error for the estimate. The mean values are the average RMS
error across all nine materials.

Material n=3 n=4 n=5
61 60 et E1 60 ft E1 60 Et

1 .0137 .0013 .0066 .0110 .0006 .0052 .0063 .0004 .0030
2 .1548 .0774 .0999 .1443 .0957 .1084 .1229 .0967 .1031
3 .1768 .1212 .1355 .1015 .0974 .0983 .0582 .0456 .0487
4 .0507 .0082 .0250 .0370 .0024 .0176 .0268 .0031 .0129
5 .0226 .0060 .0119 .0030 .0042 .0040 .0024 .0072 .0065
6 .0861 .0181 .0436 .0642 .0104 .0316 .0432 .0078 .0215
7 .0505 .0210 .0302 .0256 .0089 .0144 .0064 .0125 .0114
8 .1288 .0219 .0637 .1257 .0276 .0641 .1184 .0417 .0668
9 .0212 .0095 .0131 .0069 .0038 .0047 .0020 .0043 .0039
mean .0784 .0316 .0477 .0577 .0279 .0387 .0429 .0244 .0309
Material n=6 n=7 n=8

61 60 Et E1 60 Et E1 60 et

1 .0037 .0008 .0019 .0014 .0036 .0032 .0016 .0038 .0034
2 .0777 .0962 .0924 .0170 .0913 .0809 .0214 .0817 .0728
3 .0677 .0115 .0335 .0692 .0073 .0333 .0771 .0024 .0364
4 .0129 .0039 .0070 .0115 .0046 .0068 .0060 .0061 .0061
5 .0026 .0037 .0035 .0027 .0029 .0029 .0028 .0021 .0023
6 .0175 .0059 .0098 .0132 .0031 .0068 .0056 .0067 .0065
7 .0042 .0059 .0056 .0041 .0052 .0050 .0032 .0037 .0036
8 .1164 .0295 .0607 .1126 .0049 .0533 .1014 .0073 .0482
9 .0020 .0025 .0024 .0021 .0032 .0030 .0021 .0027 .0026
mean .0339 .0178 .0241 .0260 .0140 .0217 .0246 .0129 .0202
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